\*\*ALL MATERIALS COPYRIGHT RICETEC\*\*

# Research & Technology Driving Sustainable Grain Quality in Rice Supply

#### Rusty Bautista, RiceTec, Inc.

Presentation to: Rice Marketing and Technology Convention Cancun, Mexico

June 4-6, 2024





# **GOALS IN RICE BREEDING**







#### THESE FACTORS IMPACT RICE QUALITY!

- Genetic
- Biotic and Abiotic Pressures
- Agronomic Practices
- Pre- and Post-Harvest Processing and Handling





#### **ANNUAL AVERAGE RICE YIELD, ARKANSAS**



RiceTec

Source: nass/usda.gov/AR

## **GLOBAL RICE ACREAGE AND PRODUCTION**





Source: nass/usda.gov

### **GRAIN QUALITY**

- What is it?
- It impacts consumer satisfaction, economic returns to producers and processors

#### • GQ attributes:

- Grain shape, size and distribution
- Amylose content
- Gelatinization temperature
- Protein content
- Pasting properties
- Millability
- Appearance (translucency and chalkiness)



#### **KERNEL RIPENING IN PANICLES**

# Uniform kernel maturity



# Less uniform kernel maturity



## INDIVIDUAL KERNEL DEVELOPMENT AND MATURATION





## **COMMON QUALITY ISSUES: KERNEL CHALK**

#### **Kernel Chalk**







<sup>®</sup>RiceTec, Inc. All rights reserved.

# STARCH GRANULES PACKING IN RICE KERNELS

#### Translucent kernel



#### Chalky kernel



# COMMON QUALITY ISSUES: FISSURE, IMMATURE, INSECT & FUNGI DAMAGES







<sup>®</sup>RiceTec, Inc. All rights reserved.

### **KERNEL FISSURING AND HARVEST MOISTURE CONTENT**





### **OPTIMAL HARVEST MOISTURE CONTENT**





#### **KERNEL BREAKING FORCE DISTRIBUTIONS**





## LOW AND HIGH MOISTURE CONTENT KERNELS AFFECT HEAD RICE YIELD

Bengal; Keiser



Harvest moisture content, %



# RICE GRAIN QUALITY FUNDAMENTALS SUMMARY

- Panicle architecture and kernel development
- Harvest moisture contents and distribution in panicles (optimal harvest HMC)
- Kernel size and shape (impacts drying, milling, end-use processing)
- Kernel **fissuring** (field and drying-the glass transition theory)
- N fertilizer and irrigation
- Starch Chemistry



# BREEDING PROGRAMS ADDRESSES GRAIN QUALITY & SUSTAINABILITY

- Yield, milling, and functional properties
- Sourcing genetic pool resistant to kernel fissuring and kernel chalk



# **Breeding Programs addresses Grain Quality**



# Gene Editing--a tool to improve Grain Quality

- Gene editing technology allows for the generation of precise targeted changes within the genome of an organism
  - This may well open new opportunities to address grain quality challenges at the genetic level
- Can be used for both R&D
- Global regulatory picture is complicated but trending toward a more uniform gene editing friendly system.
  - Many nations allow non-GMO path to market for gene edited products that contain no foreign DNA
  - Including USA, Brazil, India and many others
  - Even draft EU framework allows for gene edited products to come to market

#### the plant journal

#### S E B

The Plant Journal (2023)

doi: 10.1111/tpj.16317

#### Targeted mutagenesis of the vacuolar H<sup>+</sup> translocating pyrophosphatase gene reduces grain chalkiness in rice

Peter James Icalia Gann<sup>1,2</sup>, Dominic Dharwadker<sup>3</sup>, Sajedeh Rezaei Cherati<sup>4</sup>, Kari Vinzant<sup>4</sup>, Mariya Khodakovskaya<sup>4</sup> and Vibha Srivastava<sup>1,2,5,\*</sup> (

<sup>1</sup>Cell and Molecular Biology Program, University of Arkansas, 115 Plant Science Building, Fayetteville, AR 72701, USA, <sup>2</sup>Department of Crop, Soil and Environmental Sciences, University of Arkansas Division of Agriculture, 115 Plant Science Building, Fayetteville, AR 72701, USA,

<sup>3</sup>Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, West Maple Street, AR 72701, USA,

<sup>4</sup>Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR 727704, USA, and <sup>5</sup>Department of Horticulture, University of Arkansas Division of Agriculture, 315 Plant Science Building, Fayetteville, AR 72701, USA





#### HYBRIDS WITH 40-70% LOWER CH4 EMISSIONS VS. VARIETIES



University of Arkansas, Stuttgart, AR, 2012. Simmonds et al, 2015. ®RiceTec, Inc. All rights reserved. Studies conducted at EMBRAPA Clima Temperado, Estação Experimental Terras Baixas, Capão do Leão, RS, Brazil. 2021-2022

#### **MORE VALUE FOR THE PLANET**



• Change irrigation practices



#### **THANK YOU!**