Quality Assurance of Paddy & Rice by Grain Cooling/Grain Chilling

FrigorTec LP
Johannes Karcher
Houston
info@frigortecamericas.com
GRANIFRIGOR™ Grain Cooling

- Suctioned ambient air will be cooled down and de-hydrated.
- HYGOTHERM™ heats up the cold and wet air a little again, so the relative humidity decreases.
- Conditioned air is pressed through the grain in storage.
- Cold air takes energy (moisture and temperature) from the Grain and moves it to the Exhaust.

Temperature

- Ambient air: 100 °F / 80 % r.H.
- Ambient air: 75 °F / 50 % r.H.
- Chilled Air: 45 °F / 100 % r.H.
- Reheated air 52 °F / 65 % r.H.
Storage time for grain (days)

Grain temp. (°F)
- 90
- 84
- 80
- 75
- 70
- 64
- 60
- 55
- 50
- 44
- 40

Grain moisture (%)
- 1
- 2
- 4
- 8
- 16
- 32
- 64
- 128
- 256
- 512
- 1024
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23

Approx. 3 weeks

Guidelines for grain cooling!

The storage time and treatment measures depend on the results of continuous controls.
Losses through respiration

The grain respiration – total formula of the chemical process:

\[\text{C}_{12}\text{H}_{22}\text{O}_{11} + 12 \text{ O}_2 \rightarrow 12 \text{ CO}_2 + 11 \text{ H}_2\text{O} + 1.567 \times 10^{-3} \text{ kWh} \]

carbohydrates + oxygen → carbon dioxide + water + heat

Grain lives, it breathes and produces heat!

➢ **Dependent on product moisture content and -temperature**
Heat generation of Rice (acc. to Jouin)

Heat generation [M\text{J}/\text{t}, \text{day}]

Grain’s moisture content [%]

- 30
- 26
- 22
- 20
- 18
- 17
- 16
- 15
- 14
- 13

Grain temperature [°F]

41 56 77 95 133

14.5%
Calculation of respiration / Substance losses

<table>
<thead>
<tr>
<th>Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain type</td>
<td>Rice</td>
<td>Weight = 49 bu/t</td>
</tr>
<tr>
<td>Grain moisture</td>
<td>14,5%</td>
<td></td>
</tr>
<tr>
<td>Grain temperature</td>
<td>25 °C / 77 °F</td>
<td></td>
</tr>
<tr>
<td>Grain price</td>
<td>320 US$/t</td>
<td>(US$6.5/Bu)</td>
</tr>
<tr>
<td>Storage time</td>
<td>120 days</td>
<td></td>
</tr>
<tr>
<td>Storage quantity</td>
<td>10.000 t</td>
<td>490,000 Bu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formula</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Result</th>
<th>Grain losses [t]</th>
<th>Losses [US$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain stored at 25°C / 77°F</td>
<td>60,0 (2.940 Bu)</td>
<td>19,200</td>
</tr>
<tr>
<td>Grain stored at 20°C / 68°F</td>
<td>37,0 (1.813 Bu)</td>
<td>11,840</td>
</tr>
<tr>
<td>Grain stored at 12°C / 55°F</td>
<td>negligible (< 1)</td>
<td>-</td>
</tr>
</tbody>
</table>
GRANIFRIGOR™ Grain Cooling

Slowly reheating of cold stored grain, Paddy and rice because of:

- Only point contact of grain
 - Low convection of air between the grain
 - Slow reheating as result of reduced respiration

Advantages:

- Grain stays cool for 4 - 6 months
- Also in tropical area
- One cooling cycle required
- Considering energy savings to ventilation
GRANIFRIGOR™ Grain Cooling

Insects

Lesser grain borer
Tribolium castaneum

Maize weevil
Sitophilus zeamais

Granary weevil
Sitophilus granarius

Rice weevil
Sitophilus oryzae
Development of damaging insects

- **Grain weevil**
- **Rice weevil**
- **Lesser grain borer**
- **Flour moth**
- **Rice flour beetle**

°F

- **Optimum development**
- **No development**
Development of rice weevil

Number of grain weevils

- Juni
- Juli
- August
- September
Development of various mould fungi

- Fusarium culmorum
- Penicillium rugulosum
- Penicillium cyclopium
- Aspergillus versicolor
- Aspergillus glaucus
- Absidia rhizopus arrhizus
- Streptomyces altus
- Aspergillus candidus
- Penicillium capsulatum
- Talaromyces thermophilus

Fusarium culmorum
Aspergillus glaucus

400 x
Sorption isotherm of grains at ≈ 70 °F

- Barley 25°C
- Wheat 25°C
- Corn 20°C
- Oats 25°C
- Rape 20°C
- Rice 20°C
GRANIFRIGOR™ Grain Cooling

Ventilation with Ambient Air

Starting with Grain temperature of 75 °F

First night ventilation with 65 °F

High risk of condensation and spoiling after stopping the aeration fans

Never blow warm or humid air to the Grain to prevent spoiling

GRAIN COOLING

After starting the GRANIFRIGOR the Grain Cooler handle the humidity and temperature and is running 24/7 until the Silo is completely cooled.

No risk of condensation inside the Silo!
Drying Effect

<table>
<thead>
<tr>
<th>Grain moisture</th>
<th>Drying effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 17 %</td>
<td>> 1,5 %</td>
</tr>
<tr>
<td>14% – 17%</td>
<td>~ 0,5% - 1,5 %</td>
</tr>
</tbody>
</table>
GRANIFRIGOR™ Grain Cooling

Combination drying - cooling

- 1st drying step: 86 °F
- 2nd drying step: 95 °F (tempering)
- 3rd drying step: 95 °F
- Cooling: 59 °F (storage for milling or 2nd cooling)

Cooling time depends on cooling capacity and storage capacity.

© FrigorTec GmbH
GRANIFRIGOR™ Grain Cooling

Combination drying - cooling

- 1st drying step: 95 °F for 5 days
- 1st cooling: 59 °F for 20 days
- 2nd drying step: 95 °F for 5 days
- 2nd cooling: 59 °F
- storage

Cooling time depends on cooling capacity and storage capacity.

© FrigorTec GmbH
GRANIFRIGOR™ Grain Cooling

Combination drying - cooling

conventional System

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husk</td>
<td>20%</td>
</tr>
<tr>
<td>Bran</td>
<td>10%</td>
</tr>
<tr>
<td>Broken Rice</td>
<td>5%</td>
</tr>
<tr>
<td>Head Rice</td>
<td>65%</td>
</tr>
</tbody>
</table>

combination drying - cooling

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husk</td>
<td>20%</td>
</tr>
<tr>
<td>Bran</td>
<td>10%</td>
</tr>
<tr>
<td>Broken Rice</td>
<td>2%</td>
</tr>
<tr>
<td>Head Rice</td>
<td>68%</td>
</tr>
</tbody>
</table>

© FrigorTec GmbH
Economical Feasibility (Flexibility)

Barley, Canadian no.1 Western Barley, spot price, US$ per metric ton

Apr 2009 - Mar 2010: 36,02 (32.44 %)

Source: International Monetary Fund
Energy consumption during cooling

depending on:

- Ambient air humidity and temperature
- Grain moisture and temperature
- Adjusted cold-air humidity and temperature

Practical values:
8.0 – 10.0 kWh/t per ton Rice (tropical zones)
0.1 – 0.2 kWh/Bu per Bushel Rice (tropical zones)

4.0 – 6.0 kWh/t per ton Rice (moderate zones)
0.08 – 0.12 kWh/Bu per Bushel Rice (moderate zones)
GRANIFRIGOR™ Grain Cooling

<table>
<thead>
<tr>
<th>Date:</th>
<th></th>
<th>City:</th>
<th>Belize</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project:</td>
<td></td>
<td>Country:</td>
<td>Belize</td>
<td></td>
</tr>
<tr>
<td>Basic data of stored grain:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage time (days):</td>
<td>120</td>
<td>Temperature (°F):</td>
<td>65.0</td>
<td></td>
</tr>
<tr>
<td>Storage quantity (t):</td>
<td>7,000</td>
<td>Moisture content (%):</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>Storage quantity (bushels):</td>
<td>318,182</td>
<td>Grain self-heating factor:</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Sales price (tonne):</td>
<td>$320.00</td>
<td>Loss to dust (Multiplier):</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Total value of grain:</td>
<td>$2,240,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy cost:

| Electrical power (kW) | $0.190 | Oil ($/l) or Gas (m³) | $1.00 |

GRANIFRIGOR™ Recommendation:

<table>
<thead>
<tr>
<th>Unit</th>
<th>KK310 Tropic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling capacity/unit (Tropical climate)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Calculated number of units

<table>
<thead>
<tr>
<th>KK310 Tropic</th>
<th>(calculated)</th>
</tr>
</thead>
</table>

Practical number of units

<table>
<thead>
<tr>
<th>KK310 Tropic</th>
<th>(practical)</th>
</tr>
</thead>
</table>

Costs / year

| | $28,548.45 |

Flexibility in storage time (%)

| | 0.1% |

Keeping the freshness and quality of rice (%)

| | 0.3% |

No losses through insect pests (%)

| | 0.1% |

No losses through mould fungi (%)

| | 0.1% |

No moving of the grain:

- No abrasion (%)
- No labour & storage costs (%)

No losses of dry substance (Jouin) (tonne)

| | 50 | $16,000.00 |

Savings (all) by minimizing the drying (1 %) (Stored)

| | $6,363.64 |

No chemical treatment necessary* (€/t)

| | |

No breakage (%)

| | 1.5% |

No decoloring (%)

| | 0.2% |

No oxidation (%)

| | |

Number of aeration ventilators:

- Dissolved hours/day (during storage time) [h/day]
- Electrical power/unit of existing or new units [kW]
- Service & spare parts of existing or new units [%]
- Investment of new units [€]

Savings / year

| | $73,883.64 |

GRANIFRIGOR™ investment:

| 1 units | $70,000.00 |

Amortisation (ROI): 1.5 Years

* Fixed costs and fixed tax will become payable expenses.

** Remark:** All data are approximate practical values, based on the assumptions made and are therefore non-binding.

- Individual economic feasibility calculation
- Fast ROI
GRANIFRIGOR™ Grain Cooling

Advantages of grain conservation by cooling (Part 1)

• Risk-free long-term storage without quality loss

• Conservation of harvest freshness for outstanding taste of rice / grain

• Minimizing respiration losses

• Protection from insects and their damage

• Avoiding expensive and unecological chemical treatment

• Protection of organic grain, paddy and rice

• Protection from fungi and their mycotoxins

• Reduction from drying costs and energy consumption

• No yellow discoloration of rice because of over drying and low storage quality

• Higher head rice recovery because of less fissures and cracks
Advantages of grain conservation by cooling (Part 2)

• Higher milling performance and efficiency
• No aggressive rice polishing
• Faster parboiling with brighter whiteness of rice (moisture content)
• Simplification of storage management
• No breakage of Rice by circulation
• Conservation of germinating quality for fast grow and high yield
• Independent operation of weather conditions
• Increase of revenue and improving of market position
• Short amortization period
GRANIFRIGOR™ Grain Cooling in Silos

GRANIFRIGOR™ KK 145 TY
Grain cooling with flexible air hose

GRANIFRIGOR™ KK 220
GRANIFRIGOR™ Grain Cooling

Application

In general: all kind of grains and (oil) seeds

- (Buck)wheat
- (Malting) barley
- Maize
- Millet
- Oats
- Rye
- Sorghum
- Rice, paddy
- Rapeseed / Oil seeds
- Sunflower seed

- Hops
- Soybeans
- Peanuts
- Peas
- Grass seeds
- Potatoes
- Nuts
- Pellets
- Coffee
- Cacao beans
Thank you for your attention!

Johannes Karcher

e-mail: info@frigortecamericas.com

phone: 832 730 1894

Houston, TX 77007